Research

Advanced Laser Lab

DATEDecember 31, 2022
SHARE

Research Interests

Fiber laser; Laser glass material



Publications:

1. Ruoning Wang, Ke Tian*, Meng Zhang, Zhiyuan Zhao, Elfed Lewis, Gerald Farrell, and Pengfei Wang*. Femtosecond laser refractive index modulated multimode fiber for high sensitivity vector bending measurement. Journal of Lightwave Technology, accepted for publication (*Corresponding author)

2. Ke Tian*, Zhiyuan Zhao, Mingyuan Zhang, Meng Zhang, Elfed Lewis, Gerald Farrell, and Pengfei Wang*. A Long-Period Fiber Grating Sensor Based on a Core-Cladding Misalignment Structure. Journal of Lightwave Technology, vol. 40, no. 15, pp. 5316-5321, 2022. (*Corresponding author)

3. Ke Tian, Jibo Yu, Fuchuan Lei, Jonathan Ward, Angzhen Li, Pengfei Wang, and Síle Nic Chormaic*. Blue band nonlinear optics and photodarkening in silica microdevices. Photonics Research, vol. 10, no. 9, pp. 2073-2080, 2022. (*Corresponding author).

4. Yating Yi, Haiyan Zhao, Yuxuan Jiang, Gilberto Brambilla, YaXian Fan and Pengfei Wang*, "Periodic optical filter based on high-Q nested multiple coupled-knots resonator," Journal of Optics, vol. 24, no. 2, pp. 065704, 2022. (*Corresponding author).

5. Lin She, Niannian Xu, Pengfei Wang*, Jiquan Zhang, Mo Liu, Nian Lv, Ruoning Wang, Zhenrui Li, Shijie Jia, Shunbin Wang, Gerald Farrell, and Weimin Sun, "Direct Femtosecond Laser Inscription of High-order Bragg Gratings in Fluoroaluminate Glass Fiber," IEEE Photonics Journal, vol. 14, no. 2, pp. 5119105, 2022 (*Corresponding author)

6. Changjun Xu, Jiquan Zhang, Mo Liu, Haiyan Zhao, Fengzi Ling, Shijie Jia, Gerald Farrell, Shunbin Wang, and Pengfei Wang*, "Recent advances in luminescence and lasing research in ZBYA glass," Optical Materials Express, vol. 12, no. 4, pp. 1542-1554, 2022 (*Corresponding author)

7. Ruoning Wang, Ke Tian, Meng Zhang, Mingyuan Zhang, Gerald Farrell, Elfed Lewis, Libo Yuan, and Pengfei Wang*, "Investigation on the Dependence of Directional Torsion Measurement on Multimode Fiber Geometry," Journal of Lightwave Technology, vol. 40, no. 12, pp. 3997-4002, 2022. (*Corresponding author)

8. Jibo Yu, Zhen Shen, Zhiyong Yang, Sisheng Qi, Yuxuan Jiang, Gilberto Brambilla, Chun-Hua Dong, and Pengfei Wang*, "The Investigation of Forward and Backward Brillouin Scattering in High-Q Chalcogenide Microspheres," IEEE Photonics Journal, vol. 14, no. 1, pp. 3011505, 2022. (*Corresponding author)

9. Changjun Xu, Jiquan Zhang, Xiaotong Zhao, Haiyan Zhao, Fengzi Ling, Shijie Jia, Gerald Farrell, Shunbin Wang, and Pengfei Wang*, "Two-watt mid-infrared laser emission in robust fluorozirconate fibers," Optics Letters, vol. 47, no. 6, pp. 1399-1402, 2022. (*Corresponding author)

10. Niannian Xu, Zhiyong Yang, Jiquan Zhang, Nian Lv, Mo Liu, Ruoning Wang, Zhenrui Li, Shijie Jia, Gilberto Brambilla, Shunbin Wang, and Pengfei Wang*, "Direct femtosecond laser inscription of Bragg gratings in Ho3+/Pr3+ co-doped AlF3-based glass fibers for a 2.86 µm laser," Optics Letters, vol. 47, no. 3, pp. 597-600, 2022. (*Corresponding author)

11. Yating Yi, Yuxuan Jiang, Haiyan Zhao, Gilberto Brambilla, Yaxian Fan, and Pengfei Wang*, "High-Sensitivity Humidity Sensor Based on Microknot Resonator Assisted Agarose-Coated Mach-Zehnder Interferometer," Journal of Lightwave Technology, vol. 40, no. 7, pp. 2191-2196, 2022. (*Corresponding author)

12. Jie Zhang, Ruicong Wang, Mo Liu, Shunbin Wang, Zhi Zhang, Gerald Farrell, Shijie Jia, and Pengfei Wang*, "ZnF2 modified AlF3-based fluoride glasses with enhanced mid-infrared 3.5 μm emission," Journal of the American Ceramic Society, 2022, 105(7): 4691-4698.. (*Corresponding author)

13. Pengfei Wang, Shi Li, Fengzi Ling, Gerald Farrell, Elfed Lewis, and Yu Yin*. "All-optical modulator based on an microfibre coil resonator functionalized with MXene," Optical Fiber Technology, vol. 68, pp. 102776, 2022. (*Corresponding author)

14. Ke Tian, Mingyuan Zhang, Zhiyuan Zhao, Ruoning Wang, Dejun Liu, Xin Wang, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, "Ultra-compact in-core-parallel-written FBG and Mach-Zehnder interferometer for simultaneous measurement of strain and temperature," Optics Letters, vol. 46, no. 22, pp. 5595-5598, 2021. (*Corresponding author)

15. Jin Yu, Yanqiu Du, Xiaotong Zhao, Shijie Jia, Zhenrui Li, Shunbin Wang, and Pengfei Wang*, "2 µm lasing from Tm3+-doped PbO-PbF2-Bi2O3-Ga2O3 glass microspheres," Optics Letters. vol. 46, no. 20, pp. 5084-5087, 2021. (*Corresponding author)

16. Meng Zhang, Ruoning Wang, Ke Tian, Jibo Yu, Gilberto Brambilla, Libo Yuan and Pengfei Wang*, "Optical detection of ammonia in water using integrated up-conversion fluorescence in a fiberized microsphere," Journal of Lightwave Technology, vol. 39, no. 22, pp. 7303-7306, 2021. (*Corresponding author)

17. Xingchen Lin, Pengfei Wang, Hongbo Zhu*, Yawei Zhang, Yongqiang Ning. "A novel method for the welding of tailor-welded blanks with different thicknesses based on the diode laser source," Optics and Laser Technology, vol. 141, pp. 107100, 2021.

18. Xingchen Lin, Pengfei Wang, Hongbo Zhu*, Ziqi Song, Yawei Zhang, Yongqiang Ning. "A novel processing method based on the 3-spot diode laser source for the laser cladding of stainless-steel ball valves," Optics and Laser Technology, vol. 141, pp. 107142, 2021.

19. Lin She, Qianyu Qi, Peiqing Zhang, Shixun Dai, Yuxuan Jiang, Weimin Sun, Shijie Jia, Shunbin Wang, Gilberto Brambilla, and Pengfei Wang*, " Mid-infrared fluoroindate glass long-period fber grating by femtosecond laser inscription," Infrared Physics and Technology, vol. 116, pp. 103808, 2021. (*Corresponding author)

20. Pengfei Wang, Jie Zhang, Jiquan Zhang, Shijie Jia, Lijun Wang, Yongqiang Ning, Hangyu Peng, Gerald Farrell, Shunbin Wang* and Ruicong Wang*, "3.5 μm emission in Er3+ doped fluoroindate glasses under 635 nm laser excitation," Journal of Luminescence, vol. 237, pp. 118200, 2021.

21. Jiquan Zhang, Haiyan Zhao, Ruicong Wang, Angzhen Li, Jie Zhang, Shijie Jia, Gilberto Brambilla, Shunbin Wang*, and Pengfei Wang*, "3.9 μm emission in Nd3+ sensitized Ho3+ doped fluoroaluminate glasses," Journal of Alloys and Compounds, pp. 161684, 2021. (*Corresponding author)

22. Jiquan Zhang, Mo Liu, Jin Yu, Ruicong Wang, Shijie Jia, Zijun Liu, Gerald Farrell, Shunbin Wang* and Pengfei Wang*, "Praseodymium mid-infrared emission in AlF3-based glass sensitized by ytterbium," Optics Express, vol. 29, no. 21, pp. 34166-34174,2021. (*Corresponding author)

23. Jiquan Zhang, Ruicong Wang, Xin Wang, Wenhao Li, Mo Liu, Shijie Jia, Lijun Wang, Yongqiang Ning, Hangyu Peng, Gilberto Brambilla, Shunbin Wang* and Pengfei Wang*, "Efficient 3.5 μm mid-infrared emission in heavily Er3+-doped fluoroaluminate glasses and its emission mechanism." Journal of Luminescence, vol. 238, pp. 118301, 2021. (*Corresponding author)

24. Mo Liu, Jiquan Zhang, Jie Zhang, Zhi Zhang, Gerald Farrell, Gilberto Brambilla, Shunbin Wang and Pengfei Wang*, “2.4 μm fluorescence of holmium doped fluoroaluminate glasses”, Journal of Luminescence, vol. 238, pp. 118265, 2021. (*Corresponding author)

25. Angzhen Li, Ke Tian, Jibo Yu, Rashmi A. Minz, Jonathan M. Ward, Samir Mondal, Pengfei Wang* and Síle Nic Chormaic*, "A packaged whispering gallery resonator device based on an optical nanoantenna coupler," Optics Express, vol. 29, no. 11, pp. 16879-16886, 2021. (*Corresponding author)

26. Mo Liu, Jiquan Zhang, Niannian Xu, Xinwei Tian, Shunbin Wang*, Gilberto Brambilla, and Pengfei Wang*, "Room-temperature Watt-level and Tunable ~3 μm ultra-stable Lasers in Ho3+/Pr3+ Co-doped AlF3-based Glass Fiber," Optics Letters, vol. 46, no. 10, pp. 2417-2420, 2021. (*Corresponding author)

27. Zhi Zhang, Ruicong Wang, Mo Liu, Shunbin Wang, Jie Zhang, Gilberto Brambilla, Shijie Jia, and Pengfei Wang*, "Enhanced 3.9 μm emission from diode pumped Ho3+/Eu3+ co-doped fluoroindate glasses," Optics Letters, vol. 46, no. 9, pp. 2031-2034, 2021. (*Corresponding author)

28. Yuxuan Jiang, Yating Yi, Gilberto Brambilla, and Pengfei Wang*, " High-sensitivity, fast-response ethanol gas optical sensor based on a dual microfiber coupler structure with the Vernier effect," Optics Letters, vol. 46, no. 7, pp. 1558-1561, 2021. (*Corresponding author)

29. Yating Yi, Yuxuan Jiang, Haiyan Zhao, Gilberto Brambilla, Yaxian Fan and Pengfei Wang*, "A High-Performance Ultrafast Humidity Sensor Based on Micro-Knot Resonator-Assisted Mach-Zehnder for Monitoring Human Breath," ACS Sensors, vol. 5, no.11, pp. 3404-3410, 2020. (*Corresponding author)

30. Jibo Yu, Jiquan Zhang, Ruicong Wang, Angzhen. Li, Meng Zhang, Shunbin Wang, Pengfei Wang*, Jonathan Ward and Sile Nic Chormaic*, "A tellurite glass optical microbubble resonator," Optics Express, vol. 28, no. 22, pp. 32858-32868, 2020. (*Corresponding author)

31. Yu Yin, Shi Li, Jing Ren, Yanqiu Du, Gerald Farrell, Gilberto Brambilla, Pengfei Wang*, "All-optical modulation in Black Phosphorus functionalized microfibre coil resonator," Measurement Science and Technology, vol. 32(1): 015202, 2020. (*Corresponding author)

32. Pengfei Wang, Han Zhang, Yu Yin, Qiuyun Ouyang, Yujin Chen, Elfed Lewis, Gerald Farrell, Masaki Tokurakawa, Sulaiman Wadi Harun, Cong Wang and Shi Li*, "NiS2 as a broadband saturable absorber for ultrafast pulse lasers," Optics & Laser Technology, vol. 132, pp. 106492, 2020. (*Corresponding author)

33. Jin Yu, Meng Zhang, Yanqiu Du, Gilberto Brambilla, Shijie Jia, Yongqiang Ning, Hangyu Peng, Shunbin Wang*, and Pengfei Wang*, "Broadband 2.7 μm mid-infrared emissions in Er3+-doped PbO-PbF2-Bi2O3-Ga2O3 glasses," Optics Letters, vol. 45, no. 16, pp. 4638-4641, 2020. (*Corresponding author)

34. Xin Wang, Pengfei Wang*, Ke Tian, Shijie Jia, Shunbin Wang, and Gilberto Brambilla, "Ultra-broadband near-infrared photoluminescence in Er3+-Ni2+co-doped transparent glass ceramics containing nano-perovskite KZnF3," Ceramics International, vol. 46, pp. 25987-25991. (*Corresponding author)

35. Haiyan Zhao, Ruicong Wang, Xin Wang, Shijie Jia, Yaxian Fan, Elfed Lewis, Gerald Farrell, Shunbin Wang, and Pengfei Wang*, "Intense mid-infrared emission at 3.9 μm in Ho3+-doped ZBYA glasses for potential use as a fiber laser," Optics Letters, vol. 45, no. 15, pp. 4272-4275, 2020. (*Corresponding author)

36. Xin Wang, Wenhao Li, Haiyan Zhao, Shunbin Wang, Shijie Jia, Yongkang Dong,Yanqiu Du, Gilberto Brambilla, and Pengfei Wang*, "Yb3+-Yb3+ Cooperative Upconversion in Oxyfluoride Glass and Glass Ceramics," Journal of Luminescence, vol. 226, pp. 117461, 2020. (*Corresponding author)

37. Pengfei Wang, Yating Yi, Xin Wang, Angzhen Li, Shijie Jia, Yaxian Fan, Gilberto Brambilla, Shunbin Wang*, Haiyan Zhao*, "Tm3+-doped fluorotellurite glass microsphere resonator laser at 2.3 μm," Optics Letters, vol. 45, no. 13, pp. 3553-3556, 2020. (*Corresponding author)

38. Ke Tian, Ruoning Wang, Meng Zhang, Xianfan Wang, Xin Wang, Guoyong Jin, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, "Simultaneous measurement of displacement and temperature based on two cascaded balloon-like bent fibre structures," Optical Fiber Technology, vol. 58, pp. 102277, 2020. (*Corresponding author)

39. Ke Tian, Meng Zhang, Jibo Yu, Yuxuan Jiang, Haiyan Zhao, Xin Wang, Dejun Liu, Guoyong Jin, Elfed Lewis, Gerald Farrell and Pengfei Wang*, "High sensitivity, low temperature-crosstalk strain sensor based on a microsphere embedded Fabry-Perot interferometer," Sensors and Actuators A, vol. 310, pp. 112048, 2020. (*Corresponding author)

40. Ruicong Wang, Jiquan Zhang, Haiyan Zhao, Xin Wang, Shijie Jia, Haitao Guo, Shixun Dai, Peiqing Zhang, Gilberto Brambilla, Shunbin Wang*, and Pengfei Wang*, "3.9 μm emission and energy transfer in ultra-low OH-, Ho3+ /Nd3+ co-doped fluoroindate glasses," Journal of Luminescence, vol. 225, pp. 117363, 2020. (*Corresponding author)

41. Ruoning Wang, Ke Tian, Meng Zhang, Yuxuan Jiang, Libo Yuan, Guoyong Jin, Gerald Farrell, Elfed Lewis, and Pengfei Wang*, "Investigation on the Polarization Dependence of an Angled Polished Multimode Fibre Structure," Journal of Lightwave Technology, vol. 38, no. 16, pp. 4520-4525, 2020. (*Corresponding author)

42. Meng Zhang, Ke Tian, Shunbin Wang, Libo Yuan, Gerald Farrell, Elfed Lewis, and Pengfei Wang*, "Color Variation of the Up-conversion Luminescence in Er3+-Yb3+ Co-doped Lead Germanate Glasses and Microsphere Integrated Devices," Journal of Lightwave Technology, vol. 38, no. 16, pp. 4397-4401, 2020. (*Corresponding author)

43. Xiaosong Lu, Jianhui Li, Lu Yang, Jing Ren, Mingyang Sun, Anping Yang, Zhiyong Yang, Ravinder Kumar Jain, and Pengfei Wang*, "Ultrabroad 2.5-5.5 μm mid-Infrared emission from Co2+/Fe2+ codoped nano-chalcogenide glass composite," Optics Letters, vol. 45, no. 10, pp. 2676-2679, 2020. (*Corresponding author)

44. Xin Wang., Jibo Yu, Haiyan Zhao, Xiaosong Lu, Wenhao Li, Ke Tian, Pengfei Wang*, "1.88 μm laser emission from Tm3+ doped fluorosilicate glass microspheres with excellent stability and high damage threshold." Journal of Luminescence, vol. 220, pp. 117028, 2020. (*Corresponding author)

45. Haidong Liang, Yuxuan Jiang, Xianfan Wang, Elfed Lewis and Pengfei Wang*, "All-Fiber Optic Displacement Sensing System for an Ilizarov Transverse Tibial Bone Transport device," Applied Optics, vol. 59, no. 7, pp. 2077-2084, 2020. (*Corresponding author)

46. Yuxuan Jiang, Yating yi, Gilberto Brambilla and Pengfei Wang*, "Ultra-high-sensitivity refractive index sensor based on dual-microfiber coupler structure with Vernier effect," Optics Letters, vol. 45, no. 5, pp. 1268-1271, 2020. (*Corresponding author)

47. Shunbin Wang, Jiquan Zhang, Shijie Jia, Gilberto Brambilla, Niannian Xu and Pengfei Wang*, "2.9 µm lasing from Ho3+/Pr3+ co-doped AlF3 based glass fiber pumped by a 1150 nm laser, " Optics Letters, vol. 45, no. 5, pp. 1216-1219, 2020. (*Corresponding author)

48. Ke Tian, Jibo Yu, Xin Wang, Haiyan Zhao, Dejun Liu, Elfed Lewis, Gerald Farrell, and Pengfei Wang*,"A miniature Fabry-Perot interferometer based on a movable microsphere reflector," Optics Letters. vol. 45, no. 3, pp. 787-790, 2020. (*Corresponding author)

49. Jibo Yu, Xin Wang, Wenhao Li, Meng Zhang, Jiquan Zhang, Ke Tian, Yanqiu Du, Síle Nic Chormaic and Pengfei Wang*, "An experimental and theoretical investigation of a 2 μm wavelength low-threshold microsphere laser," Journal of Lightwave Technology, vol.38, no. 7, pp. 1880-1886, 2020. (*Corresponding author)

50. Ruicong Wang, Haiyan Zhao, Meng zhang, Jiquan Zhang, Shijie Jia, Jun Zhang, Hangyu Peng, Gilberto Brambilla, Shunbin Wang, and Pengfei Wang*, "Enhancement mechanisms of Tm3+-codoping on 2 μm emission in Ho3+ doped fluoroindate glasses under 888 nm laser excitation," Ceramics International, vol. 46, no. 1, pp. 6973-6977, 2020. (*Corresponding author)

51. Xiaosong Lu, Jianhui Li, Lu Yang, Runan Zhang, Yindong Zhang, Jing Ren*, Aurelian Catalin Galca, Mihail Secu, Gerald Farrell, and Pengfei Wang*, "Third-order optical nonlinearity properties of CdCl2-modifed Ge–Sb–S chalcogenide glasses," Journal of Non-Crystalline Solids, vol. 528, pp. 119757, 2020. (*Corresponding author)

52. Haiyan Zhao, Shijie Jia, Xin Wang, Ruicong Wang, Xiaosong Lu, Yaxian Fan, M asaki Tokurakawa, Gilberto Brambilla, Shunbin Wang, and Pengfei Wang*, "Investigation of Dy3+/Tm3+ co-doped ZrF4-BaF2-YF3-AlF3 fluoride glass for efficient 2.9 μm mid-infrared laser applications," Journal of Alloys and Compounds, vol. 817, pp. 152754, 2020. (*Corresponding author)

53. Haiyan Zhao, Yating Yi, Xin Wang, Angzhen Li, Anping Yang, Zhiyong Yang, Yaxian Fan, Shijie Jia, Elfed Lewis, Gilberto Brambilla, Shunbin Wang, and Pengfei Wang*, "Triple-wavelength lasing at 1.50 μm, 1.84 μm and 2.08 μm in a Ho3+/Tm3+ co-doped fluorozirconate glass microsphere," Journal of Luminescence, vol. 219, pp. 116889, 2020. (*Corresponding author)

54. Angzhen Li, Yongkang Dong, Shunbin Wang, Shijie Jia, Gilberto Brambilla, and Pengfei Wang*, "Infrared-laser and upconversion luminescence in Ho3+-Yb3+ codoped tellurite glass microsphere," Journal of Luminescence, vol. 218, pp. 116826, 2020. (*Corresponding author)

55. Xiaosong Lu, Runan Zhang, Yingdong Zhang, Shaoqian Zhang, Jing Ren*, Lukas Strizik, Tomas Wagner, Gerald Farrell, and Pengfei Wang*, "Crystal-Field Engineering of Ultrabroadband Mid-Infrared Emission in Co2+-doped Nano-Chalcogenide Glass Composites," Journal of the European Ceramic Society, vol. 40, pp. 103-107, 2020. (*Corresponding author)

56. Sameer Salam, A. H. H. Al-Masoodi, P. Wang, and S. W. Harun, "Hybrid organic small molecules as a saturable absorber for passive Q-switching in erbium-doped fiber laser," OSA Continuum, vol. 3, no. 2, pp. 177-185, 2020.

57. X. Lin, P. Wang, Y. Zhang, Y. Ning, H. Zhu*. "Theoretical and experimental aspects of laser cutting using direct diode laser source based on multi-wavelength multiplexing, " Optics and Laser Technology, Vol. 114, pp. 66-71, 2019. (*Corresponding author)

58. A. R. Muhammad, R. Zakaria, M. T. Ahmad, P. Wang, S. W. Harun, "Pure gold saturable absorber for generating Q-switching pulses at 2 µm in Thulium-doped fiber laser cavity," Optical Fiber Technology, vol. 50, pp. 23-30, 2019.

59. Jing Yang, Chunying Guan, Jiaming Zhang, Mingjie Wang, Min Yang, Zheng Zhu, Pengfei Wang, Jun Yang, and Libo Yuan, "Low-temperature crosstalk and surrounding refractive index insensitive vector bending sensor based on hole-assistant dual-core fiber," Applied optics, vol. 58, no. 24, pp. 6597-6603, 2019.

60. Xuefeng Peng, Peiqing Zhang, Xunsi Wang, Haitao Guo, Pengfei Wang, and Shixun Dai, "Modeling and simulation of a mid-IR 4.3 µm Raman laser in chalcogenide glass fibers," OSA Continuum, vol. 2, no. 8, 2281-2292, 2019.

61. Xin Wang, Haiyan Zhao, Angzhen Li, Ke Tian, Gilberto Brambilla and Pengfei Wang*, "Near-infrared luminescence and single-mode laser emission from Nd3+ doped compound glass and glass microsphere," Frontiers in Materials-Glass Science, vol. 6, pp. 237 1-6, 2019. (*Corresponding author)

62. Xingchen Lin, Pengfei Wang, Yawei Zhang, Yongqiang Ning, Hongbo Zhu, "Theoretical and experimental aspects of laser cutting using direct diode laser source based on multi-wavelength multiplexing," Optics and Laser Technology, vol. 114, pp. 66-71, 2019.

63. Shi Li, Yu Yin, Qiuyun Ouyang, Guicang Ran, Yujin Chen, Elfed Lewis, Gerald Farrell, Masaki Tokurakawa, Sulaiman Wadi Harun, and Pengfei Wang*, "Dissipative soliton generation in Er-doped fibre laser using SnS2 as saturable absorber," Applied Physics Express, vol. 12, pp. 102008, 2019. (*Corresponding author)

64. Haiyan Zhao, Xin Wang, Ruicong Wang, Angzhen Li, Wenhao Li, Elfed Lewis, Yaxian Fan, Shijie Jia, Shunbin Wang*, and Pengfei Wang*,"Up-conversion luminescence and C-band laser in Er3+-doped fluorozirconate glass microsphere resonator," IEEE Photonics Journal, vol. 11, No. 6, 2400307, 2019. (*Corresponding author)

65. Fengzi Ling, Dejun liu, Shuai Li, Wei li, Bing Zhang, and Pengfei Wang*, "Femtosecond real-time probing of the excited-state intramolecular proton transfer reaction in methyl salicylate," Journal of Chemical Physics, vol. 151, pp. 094302, 2019. (*Corresponding author)

66. Haidong Liang, Xin Wang, Jibo Yu, Wenlei Yang, Elfed, Lewis and Pengfei Wang*, “Bismuth-doped compound germanate glass microsphere lasing in the near-infrared region,” Microw. Opt. Technol. Lett, pp. 1-5, 2019. (*Corresponding author)

67. Angzhen Li, Meng Zhang, Xin Wang, Shunbin Wang, Bingang Guo, Elfed Lewis, and Pengfei Wang*, "Directly pumped Ho3+-doped microspheres lasing at 2.0 μm," IEEE Photonics Technology Letters, vol. 31, no. 16, pp. 1366-1368, 2019. (*Corresponding author)

68. Shi Li, Yu Yin, Qiuyun Ouyang, Guicang Ran, Yujin Chen, Elfed Lewis, Gerald Farrell, Masaki Tokurakawa, Sulaiman Wadi Harun, and Pengfei Wang*, "Nanosecond passively Q-switched fibre laser using a NiS2 based saturable absorber," Optics Express, vol. 27, no. 14, pp. 19843-19851, 2019. (*Corresponding author)

69. Dejun Liu, Fengzi Ling, Rahul Kumar, Arun Kumar Mallik, Ke Tian, Changyu Shen, Gerald Farrell, Yuliya Semenova, Qiang Wu, and Pengfei Wang*, "Strain independent twist sensor based on uneven platinum coated hollow core fiber structure," Optics Express, vol. 27, no. 14, pp. 19726-19736, 2019. (*Corresponding author)

70. Shi Li, Yu Yin, Guicang Ran, Qiuyun Ouyang, Yujin Chen, Masaki Tokurukawa, Elfed Lewis, Gerald Farrell, Sulaiman Wadi Harun, and Pengfei Wang*, "Dual-wavelength mode-locked Erbium-doped fibre laser based on tin disulfide thin film as saturable absorber," Journal of Applied Physics, vol. 125, no. 24, pp. 243104, 2019. (*Corresponding author)

71. Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, Ahmad Haziq Aiman Rosol, A. A. Latiff, Sulaiman Wadi Harun, Bingang Guo, and Pengfei Wang*, "All fibre Q-switched Thulium-doped fibre laser incorporating Thulium-Holmium co-doped fibre as a saturable absorber," Optics Communications, vol. 450, pp. 160-165, 2019. (*Corresponding author)

72. Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, Masaki Tokurukawa, Ahmad Haziq Aiman Rosol, Sulaiman Wadi Harun, and Pengfei Wang*, "Multiwavelength Q-switched pulse operation with Gold nanoparticles as saturable absorber," Optical Engineering, vol.58, no. 6, pp. 066104, 2019. (*Corresponding author)

73. Xiaosong Lu, Zhiqiang Lai, Runan Zhang, Haitao Guo, Jing Ren, Lukas Strizik, Tomas Wagner, Gerald Farrell, and Pengfei Wang*, "Ultrabroadband Mid-infrared Emission from Cr2+-doped Infrared Transparent Chalcogenide Glass Ceramics Embedded with Thermally Grown ZnS Nanorods," Journal of the European Ceramic Society, vol. 39, no. 11, pp.3373-3379, 2019. (*Corresponding author)

74. He Ren, Yi Yu, Chengcheng Zhai, Bin Zhang, Anping Yang, Kangzhen Tian, Xian Feng, Zhiyong Yang, and Pengfei Wang, Barry Luther-Davies, “Chalcogenide glass fibers with a rectangular core for polarized mid-infrared supercontinuum generation,” Journal of Non-Crystalline Solids, vol. 517, pp. 57–60, 2019.

75. Meng Zhang, Angzhen Li, Jibo Yu, Xiaosong Lu, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, and Pengfei Wang*, “In-fiber temperature sensor based on green up-conversion luminescence in an Er3+-Yb3+ co-doped tellurite glass microsphere,” Optics Letters, vol. 44, no. 13, pp. 3214-3217, 2019. (*Corresponding author)

76. Dejun Liu, Fengzi Ling, Rahul Kumar, Arun Kumar Mallik, Ke Tian, Changyu Shen, Gerald Farrell, Yuliya Semenova, Qiang Wu, and Pengfei Wang*, "Sub-micrometer resolution liquid level sensor based on a hollow core fiber structure," Optics Letters, vol. 44, no. 8, pp. 2125-2128, 2019. (*Corresponding author)

77. Haiyan Zhao, Angzhen Li, Yating Yi, Masaki Tokurakawa, Gilberto Brambilla, Shijie Jia, Shunbin Wang, and Pengfei Wang*, “A Tm3+-doped ZrF4-BaF2-YF3-AlF3 glass microsphere laser in the 2.0 μm wavelength region,” Journal of Luminescence, vol. 212, pp. 207-211, 2019. (*Corresponding author)

78. Pengfei Wang, Shuo Zhang, Ruoning Wang, Gerald Farrell, Meng Zhang, Tao Geng, Elfed Lewis, and Ke Tian*, “Temperature-insensitive refractometer based on an RI modulated singlemode-multimode-singlemode fibre structure,” Optics Express, vol. 27, no. 10, pp. 13754-13764, 2019.

79. Yu Yin, Shi Li, Shunbin Wang, Shijie Jia, Jing Ren, Gerald Farrell, Elfed Lewis, and Pengfei Wang*, "Ultra-high resolution detection of Pb2+ ions using a black phosphorus functionalized microfiber coil resonator," Photonics Research, vol. 7, no. 6, pp. 622-629, 2019. (*Corresponding author)

80. Haidong Liang, Xianfan Wang, Ke Tian, Wenlei Yang, Elfed Lewis, and Pengfei Wang*, "Multimode interference effect-based all-fiber displacement sensing system for an orthopedic Ilizarov apparatus device," Applied Optics, vol. 58, no.12, pp. 3209-3213, 2019. (*Corresponding author)

81. Qingliu Hu, Tongyao Wang, Yushi Chu, Xin Wang, Yanqiu Du, Jing Ren*, Xinghua Yang, Guang Yang, Xueqian Kong, and Pengfei Wang*, "Mixed alkali effects in Er3+-doped borate glasses: Influence on physical, mechanical, and photoluminescence properties," Journal of the American Ceramic Society, vol. 102, no. 8, pp. 4562-4572, 2019. (*Corresponding author)

82. Xiaosong Lu, Zhiqiang Lai, Jing Ren*, Lukas Strizik, Tomas Wagner, Yanqiu Du, Gerald Farrell, and Pengfei Wang*, “Distribution of Tm3+ and Ni2+ in chalcogenide glass ceramics containing Ga2S3 nanocrystals: Influence on photoluminescence properties,” Journal of the European Ceramic Society, vol. 39, no. 7, pp. 2580-2584, 2019. (*Corresponding author)

83. Yating Yi, Jibo Yu, Yuxuan Jiang, Elfed Lewis, Gilberto Brambilla, and Pengfei Wang*, “Optical interleaver based on nested multiple knot microfiber resonators,” Optics Letters, vol. 44, no. 7, pp. 1864-1867, 2019. (*Corresponding author)

84. Mohd f. A. Rahman, P. H. Reddy, Mukul Paul, Das Shyamal, Anirban Dhar, M. F. Baharom, Anas Abdul Latiff, Muhammad Farid Mohd Rusdi, Pengfei Wang, Kaharudin Dimyati, and Sulaiman Wadi Harun, “Titanium dioxide fiber saturable absorber for Q-switchedfiber laser generation in the 1-micron region,” Applied Optics, vol. 58, no. 13, pp. 3495-3500, 2019.

85. Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, “A twelve-wavelength Thulium-doped fibre laser based on a microfibre coil resonator incorporating black phosphorus,” Optics Communications, vol. 437, pp.342-345, 2019. (*Corresponding author)

86. Sameer Salam, A. H. H. Al-Masoodi, Ahmed ShakirAl-Hiti, Ab. H. H. Al-Masoodi, Pengfei Wang, Wei Ru Wong, S. W. Harun, “FIrpic thin film as saturable absorber for passively Q-switched and mode-locked erbium-doped fiber laser”, Optical Fiber Technology, vol. 50, pp. 256-262, 2019.

87. Mohd Hafiz Jali, Hazli Rafis Abdul Rahim, Md Ashadi Md Johari, Sana Sulaiman Hamid, Haziezol Helmi Mohd Yuso, Siddharth Thokchom, Pengfei Wang, Sulaiman Wadi Harun, “Optical characterization of different waist diameter on microfiber loop resonator humidity sensor,” Sensors and Actuators A: Physical, vol. 285, pp. 200-209, 2019.

88. Fengzi Ling, Shuai Li, Yanmei Wang, and Pengfei Wang*, Bing Zhang, “Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine,” The Journal of Chemical Physics, vol. 150, no. 4, pp. 044308, 2019. (*Corresponding author)

89. Angzhen Li, Wenhao Li, Meng Zhang, Yindong Zhang, Shunbin Wang, Anping Yang, Zhiyong Yang, Elfed Lewis, Gilberto Brabilla, and Pengfei Wang*, “Tm3+-Ho3+ Codoped Tellurite Glass Microsphere Laser in the 1.47 μm Wavelength Region,” Optics Letters, vol. 44, no. 3, pp. 511-513, 2019. (*Corresponding author)

90. Xin Wang, Wenhao Li, Ke Tian, Elfed Lewis, Gilberto Brambilla, Yongkang Dong, Xiao Wu, and Pengfei Wang*, “Enhanced near-infrared emission in Yb3+-Cr3+ codoped KZnF3 glass ceramics excited by a solar simulator,” Ceramics International, vol. 45, no. 6, pp. 6738-6743, 2019. (*Corresponding author)

91. Yu Yin, Shi Li, Jing Ren, Gerald Farrell, Elfed Lewis, and Pengfei Wang*, “High-sensitivity salinity sensor based on optical microfiber coil resonator,” Optics Express, vol. 26, no. 26, pp. 34633-34640, 2018. (*Corresponding author)

92. Ke Tian, Meng Zhang, Gerald Farrell, Ruoning Wang, Elfed Lewis, and Pengfei Wang*, “Highly sensitive strain sensor based on composite interference established within S-tapered multimode fiber structure,” Optics Express, vol. 26, no. 26, pp. 33982-33992, 2018. (*Corresponding author)

93. Ke Tian, Gerald Farrell, Xianfan Wang, Elfed Lewis, and Pengfei Wang*, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Applied Optics, vol. 57, no. 32, pp. 9962-9968, 2018. (*Corresponding author)

94. Shi Li, Yating Yi, Yu Yin, Yuxuan Jiang, Haiyan Zhao, Yanqiu Du, Yujin Chen, Elfed Lewis, Gerald Farrell, Sulaiman Wadi Harun, and Pengfei Wang*, “A microfiber knot incorporating a tungsten disulfide saturable absorber based multi-wavelength mode-locked erbium-doped fiber laser,” Journal of Lightwave Technology, vol. 36, no. 23, pp. 5633-5639, 2018. (*Corresponding author)

95. Ke Tian, Gerald Farrell, Xianfan Wang, Yifan Xin, Yanqiu Du, Wenlei Yang, Haidong Liang, Elfed Lewis, and Pengfei Wang*, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sensors and Actuators A: Physical, vol. 284, pp. 28-34, 2018. (*Corresponding author)

96. Huan Liu, Yaxian Fan, Lin Li, Hongge Chen, Pengfei Wang, and Zhiyong Tao, “Self-adaptive terahertz spectroscopy from atmospheric vapor based on Hilbert-Huang transform,” Optics Express, vol. 26, no.21, 27279-27293, 2018.

97. Xianfan Wang, Jiquan Zhang, Ke Tian, Shunbin Wang, Libo Yuan, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, “Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance,” Optics Express, vol. 26, no.20, 26534-26543, 2018. (*Corresponding author)

98. Xin Wang, Yushi Chu, Zhiyong Yang, Ke Tian, Wenhao Li, Shunbin Wang, Shijie Jia, Gerald Farrell, Gilberto Brambilla and Pengfei Wang*, “Broadband multicolor upconversion from Yb3+-Mn2+ codoped fluorosilicate glasses and transparent glass ceramics,” Optics Letters, vol. 43, No. 20, pp. 5013-5016, 2018. (*Corresponding author)

99. Ke Tian, Gerald Farrell, Wenlei Yang, Xianfan Wang, Elfed Lewis, and Pengfei Wang*, “Simultaneous Measurement of Displacement and Temperature Based on Balloon-Shaped Bent SMF Structure Incorporating an LPG,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4960-4966, 2018. (*Corresponding author)

100. Xin Wang, Yongze Yu, Shunbin Wang, Jonathan M. Ward, Síle Nic Chormaic, and Pengfei Wang*, “Singlemode Green Lasing and Multicolor Luminescent Emission from an Er3+-Yb3+ Co-doped Compound Fluorosilicate Glass Microsphere Resonator,” OSA Continuum, vol. 1, no. 1, pp. 261-273, 2018. (*Corresponding author)

101. Yu Yin, Jibo Yu, Yuxuan Jiang, Shi Li, Gerald Farrell, Elfed Lewis, and Pengfei Wang*, “Investigation of temperature dependence of microfibre coil resonators,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4887-4893, 2018. (*Corresponding author)

102. Angzhen Li, Jiquan Zhang, Meng Zhang, Wenhao Li, Shunbin Wang, Elfed Lewis, Gilberto Brambilla, and Pengfei Wang*, “Effect of Tm3+ concentration on the emission wavelength shift in Tm3+-doped silica microsphere lasers,” Optics Letters, vol. 43, no.18, pp. 4325-4328, 2018. (*Corresponding author)

103. Angzhen Li, Jibo Yu, Meng Zhang, Xiaosong Lu, Jiquan Zhang, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, “An Yb3+-Ho3+ Codoped Glass Microsphere Laser in the 2.0 µm Wavelength Regions,” IEEE Photonics Technology Letters, vol. 30, no. 17, pp. 1543-1546, 2018. (*Corresponding author)

104. Jibo Yu, Elfed Lewis, Gilberto Brambilla, Pengfei Wang*, “Temperature sensing performance of microsphere resonators,” Sensors, vol. 18, no. 8, pp. 2515, 2018. (*Corresponding author)

105. Jibo Yu, Elfed Lewis, Gerald Farrell, Pengfei Wang*, “Compound glass microsphere resonator devices,” Micromachines, vol. 9, no. 7, pp. 356, 2018. (*Corresponding author)

106. Meng Zhang, Wenlei Yang, Ke Tian, Jibo Yu, Angzhen Li, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, and Pengfei Wang*, “In-fiber whispering-gallery mode microsphere resonator-based integrated device,” Optics Letters, vol. 43, no. 16, pp. 3961-3964, 2018. (*Corresponding author)

107. J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. Wang, J. Yang, and L. B. Yuan, “In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing,” Opt. Express, vol. 26, no.15, pp. 19091-19099, 2018.

108. A. H. H. Al-Masoodi⁠, I. A. M. Alani⁠, M. H. M. Ahmed, Ab. H. H. Al-Masoodi, Ahmed. A. Alani⁠, P. Wang*, S. W. Harun, “Cobalt oxide nanocubes thin film as saturable absorber for generating Q-switched fiber lasers at 1 and 1.5 µm in ring cavity configuration,” Optical Fiber Technology, vol. 45, pp. 128-136, 2018.

109. K. Tian, G. Farrell, E. Lewis, X. Wang, H. Liang and P. Wang*, “A High sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating,” Measurement Science and Technology, vol. 29, pp. 085104, 2018. (*Corresponding author)

110. B. Guo, S. Li, Y. Fan and P. Wang, “Versatile soliton emission from a WS2 mode-locked fiber laser,” Optics Communications, vol. 406, pp. 66-71, 2018.

111. M. F. A. Rahman, A. A. Latiff, A. H. A. Rosol, K. Dimyati, P. Wang and S. W. Harun, “Ultrashort Pulse Soliton Fiber Laser Generation with Integration of Antimony Film Saturable Absorber,” Journal of Lightwave Technology, vol. 36, no. 16, pp. 3522-3527, 2018.

112. X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang*, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” Journal of Lightwave Technology, vol. 36, no. 13, pp. 2730-2736, 2018. (*Corresponding author)

113. P. Wang, H. Zhao, X. Wang, G. Farrell and G. Brambilla, “A review of multimode interference in tapered optical fibers and related applications,” Sensors, vol. 18, pp.858, 2018.

114. Y. Jiang, Z. fang, Y. Du, E. Lewis, G. Farrell and P. Wang*, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Optics Express, vol. 26, no. 1, pp. 356-366, 2018. (*Corresponding author)

115. Z. Fang, S. Nic Chormaic, S. Wang, X. Wang, Y. Jiang, J. Qiu, and P. Wang*, “Bismuth-doped glass microsphere lasers,” Photonics Research, vol. 5, no. 6, pp. 740-744, 2017. (*Corresponding author)

116. Chengguo Tong, Tao Zhang, Jianqi Li, Pengfei Wang, Chong Kang, Libo Yuan, “Research on taper zone coupling from single-core fiber to annular-core hollow beam fiber,” Optical Review, vol. 24, no. 1, pp. 33-38, 2017.

117. Q. Hu, Z. Gao, X. Lu, J. Ren*, F. He, Z. Fang, Y. Liu, S. Sun, P. Yang and P. Wang*, “Bane to boon: intrinsic defect sensitized photoluminescence from Mn2+ or rare-earth ion doped fluorosilicate photonic glasses,” Journal of Materials Chemistry C, vol. 5, pp. 11806-11814, 2017. (*Corresponding author)

118. B. Guo, O. Ouyang, S. Li, Z. Fang, P. Wang, “Dual-Wavelength Soliton Laser Based on Graphene Ternary Composite,” Chinese Journal of Lasers, vol. 44, no. 7, pp. 0703012-1, 2017. (In Chinese)

119. Xiaosong Lu, Yindong Zhang, Jing Ren, Elfed Lewis, Gerald Farrell, Aaping Yang, Zhiyong Yang and Pengfei Wang*, “Chalcogenide glasses with embedded ZnS nanocrystals: Potential mid-infrared laser host for divalent transition metal ions,” Journal of the American Ceramic Society, vol. 101, no. 2, pp. 15247, 2017. (*Corresponding author)

120. K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang*, “A strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Optics Express, vol. 25, no. 16, pp. 18885-18896, 2017. (*Corresponding author)

121. X. Wang, G. Farrell, E. Lewis, K. Tian, L. Yuan, and P. Wang*, “A humidity sensor based on a singlemode-side polished multimode-singlemode optical fibre structure coated with gelatin,” Journal of Lightwave Technology, vol. 35, no. 18, pp. 4087-4094, 2017. (*Corresponding author)

122. Z. Gao, Y. Liu, J. Ren, Z. Fang, X. Lu, E. Lewis, G. Farrell, J. Yang and P. Wang*, “Selective doping of Ni2+ in highly transparent glass-ceramics containing nano-spinels ZnGa2O4 and Zn1+xGa2-2xGexO4 for broadband near-infrared fiber amplifiers,” Scientific Reports, vol. 7, Article no. 1783, 2017. (*Corresponding author)

123. X. Wang, E. Lewis, P. Wang*, “Investigation of the Self-Imaging Position of a Singlemode-Multimode-Singlemode (SMS) Optical Fiber Structure,” Microwave and Optical Technology Letters, vol. 59, no. 7, pp. 1645-1651, 2017. (*Corresponding author)

124. Z. Fang, X. Xiao, X. Wang, Z. Ma, E. Lewis, G. Farrell, P. Wang*, J. Ren, H. Guo, J. Qiu, "Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers," Scientific Reports, vol. 7, pp. 44456, 2017. (*Corresponding author)

125. P. Wang, A. M. Hatta, H. Zhao, W. Yang, J. Ren, Y. Fan, G. Farrell, and G. Brambilla, "Passive photonic integrated ratiometric wavelength monitor with resolution better than 15 pm," Opt. Express, vol. 25, no. 3, pp. 2939-2949, 2017.

126. K. Tian, Y. Xin, W. Yang, T, Geng, J. Ren, Y, Fan, G. Farrell, E. Lewis, and P. Wang*, "A curvature sensor based on twisted single-mode-multimode-single-mode hybrid optical fibre structure," Journal of Lightwave Technology, vol. 35, no. 9, pp. 1725-1731, 2017. (*Corresponding author)

127. L. She, P. Wang*, W. Sun, X. Wang, W. Yang, G. Brambilla, G. Farrell, "A Chalcogenide Multimode Interferometric Temperature Sensor Operating at a Wavelength of 2 μm," IEEE Sensors Journal, vol. 17, no. 6, pp. 1721-1726, 2017. (*Corresponding author)

128. Y. Chu, J. Ren, J. Zhang, G. Peng, J. Yang, P. Wang and Libo Yuan, “Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers,” Scientific Reports, vol. 6, pp. 33865, 2016.

129. P. Wang, R. Madugani, H. Zhao, W. Yang, J. M. Ward, Y. Yang, G. Farrell, G. Brambilla and S. Nic Chormaic, “Packaged Optical Add-Drop Filter Based on an Optical Microfiber Coupler and a Microsphere,” IEEE Photonics Technology Letters, vol. 28, no. 20, pp. 2277-2280, 2016.

130. B. Guo, Q. Lyu, Y. Yao and P. Wang*, “Direct generation of dip-type sidebands from WS2 mode-locked fiber laser,” Optical Materials Express, vol. 6, no. 8, pp. 2475-2486, 2016. (*Corresponding author)

131. Y. Chu, J. Ren, J. Zhang, L. Liu, P. Wang, J. Yang, G. Peng, and L. Yuan, "Effects of melting temperature and composition on spectroscopic properties of Er3+-doped bismuth glasses," Opt. Mater. Express, vol. 6, pp.279-287, 2016.

132. H. Zhao, G. Farrell, P. Wang and L. Yuan, “Investigation of particle harmonic oscillation using four-core fiber integrated twin-tweezers,” IEEE Photonics Technology Letters, vol. 28, no. 4, pp. 461-464, 2015.

133. P. Wang, J. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell and S. Nic Chormaic, "Lead silicate glass optical microbubble resonator," Applied Physics Letters, vol. 106, no. 6, pp. 061101, 2015.

134. P. Wang, L. Bo, Y. Semenova, G. Farrell and G. Brambilla, “Optical microfiber based photonic components and their applications in label-free biosensing,” Biosensors, vol. 5, pp. 471-499, 2015.

135. P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell and G. Brambilla, “A ratiometric wavelength measurement based on a Silicon-on-Insulator Directional coupler integrated device,” Sensors, vol. 15, pp. 21280-21293, 2015.

136. L. Bo, P. Wang, Y. Semenova and G. Farrell, "Optical microfiber coupler based humidity sensor with a polyethylene oxide coating," Microwave and Optical Technology Letters, vol. 57, no. 2, pp. 457-460, 2015.



Contact:

Pengfei Wang

Email:pengfei.wang@tudublin.ie